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An approach is presented for the reconstruction of phase synchronization phenomena in a chaotic CO2 laser
from experimental data. We analyze this laser system in a regime able to phase synchronize with a weak
sinusoidal forcing. Our technique recovers the synchronization diagram of the experimental system from only
few measurement data sets, thus allowing the prediction of the regime of phase synchronization as well as
nonsynchronization in a broad parameter space of forcing frequency and amplitude without further
experiments.
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Synchronization is a fundamental phenomenon of coupled
or forced nonlinear oscillators, which is nowadays attracting
a significant interest of natural science and engineering. To
date, four basic types of synchronization have been found:
complete[1,2], generalized[3], phase[4], and lag synchro-
nization [5]. Phase synchronization(PS) of coupled or peri-
odically forced complex systems has found many applica-
tions [6], including laboratory experiments, such as circuits
[7], lasers[8], plasmas[9], and electrochemical oscillators
[10], as well as natural systems, such as cardiorespiratory
interaction [11,12], brain activity of Parkinsonian patients
[13], paddlefish electrosensitive cells[14], and Canadian
lynx-hare populations[15].

To analyze data from such experimental systems, special
techniques for PS analysis have been developed and it has
been shown that they are very efficient even for noisy and
nonstationary data[6,11,13,16]. However, the problem of re-
constructing models from such synchronized data remains
open. By using such models, it is of special interest to infer
a synchronization diagram which yields the regimes of PS,
non-PS, and the borderlines between both, which are depen-
dent upon the system parameters, such as the coupling
strength and the forcing frequency of interacting nonlinear
oscillators. By recovering such synchronization diagram
from few sets of experimental data, a deeper insight into the
underlying system can be gained. This problem formulation
is quite practical in situations where an extensive synchroni-
zation experiment is not possible or is very expensive and
only limited sets are recorded. To retrieve the synchroniza-
tion regime, reconstruction of a family of models, which is
parametrized by the coupling strength and the forcing fre-
quency, from recording data is required. In a recent study, we
introduced a technique for constructing such a parametrized
family of coupled nonlinear models based on an artificial
neural network and its parameter reduction by singular value
decomposition[17]. This approach has the important practi-
cal advantage that no prior knowledge of the parametrized
family of the dynamics, in particular the underlying system
parameter values, is necessary. Our technique has been suc-
cessfully applied to prototypical PS models and to experi-
mental data from a paced plasma discharge tube, where all of
the dynamics were rather phase coherent. However, the tech-

nique is not straightforwardly applicable to more complex
systems such as fast-slow dynamical systems, which are
quite common in nature and engineering. For applications to
various natural systems, further extension is required.

The purpose of this paper is to extend this approach[17]
to the case of chaotic experimental data from a CO2 laser
[18]. Under certain conditions, the output intensity of the
laser consists of a series of spikes with chaotic time intervals
[18]. Due to its similarities to electrochemical spike trains
traveling on the axons of biological neurons, the laser is
considered as a prototypical experimental system for the
study of neural activity. With a weak sinusoidal forcing, the
laser is able to phase synchronize. The regime of PS gives
rise to a clear Arnold tongue structure[8] and, for the experi-
mental parameter used in our measurements, the occurrence
of phase slips is characterized by a type I intermittent scaling
law [19]. By the extended approach presented here, we dem-
onstrate that the synchronous behavior of the laser system is
modeled from only three sets of data, obtained from mea-
surements made with different forcing conditions.

First, we describe the experimental setup and the record-
ing data. Figure 1 shows a single mode CO2 laser with feed-
back. The optical cavity, 1.35 m long, is defined by a reflect-
ing grating (M1) acting as a totally reflecting mirror at the
desired wavelengths10.6mmd and a partially reflecting mir-
ror (M2). The laser medium, a gas mixture of CO2, He, H,
and N2, is excited by a discharge current of 6 mA applied to
the laser tube closed by two Brewster windows. The laser
cavity also contains an electro-optic modulator which con-
trols the cavity losses by a feedback signal proportional to
the laser output intensity. By acting on the two control pa-
rameters of the feedback loop, the gain and the bias voltage
sB0d, we can set the system in a condition where the output
intensity consists of a chaotic sequence of spikes[18] (Fig.
1). The chaotic system can synchronize with an external pe-
riodic perturbation applied to the electric discharge[8].

By means of a PC board(NI PCI-6040E) and an acquisi-
tion routine on LabView, we constructed the synchronization
diagram by applying a sinusoidal perturbationystd
= I sins2pntd, whose parameters were varied assn ,Id
P f1 KHz:2 KHzg3 f0% :3%g. Then, for testing and vali-
dating our method, the laser intensityxstd and the external
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modulationystd were simultaneously measured. The data se-
quences, 106 points long, sampled rateDt=500 ns with 8 bit
vertical resolution were recorded on a digital scope(Lecroy
LT 342L) and the acquired intensity datajstd were smoothed
by an averaging filter asxstd=f1/s20Cdg oi=0

20 jst− id with a
normalization constant ofC=0.16. The recording was made
for three different parameter setssn ,Id=s0 kHz, 0%d,
s1.1 kHz, 1.5%d, s1.7 kHz, 1.5%d, which are all in a regime
of non-PS. Based on only the three sets of the bivariate data
hxstd ,ystdj, our task is to predict for which parameters of
forcing frequencyn and amplitudeI the forced system is in
the regime of PS.

This condition is practical for experimental situations,
where an extensive exploration of the synchronization phe-
nomena is not possible. For instance, in neuroscience, a re-
sponse characteristic of a single neuron to sinusoidal forcing
provides an important clue. Due to its limited lifetime, how-
ever, it is almost impossible to investigate the response prop-
erty of the physiological neuron to every combination of the
forcing frequency and the amplitude. It is therefore a strong
challenge to estimate the synchronization diagram from only
a few sets of recording data.

Figures 1 and 2 show the laser intensity dataxstd and
its three-dimensional embedding(xstd ,xst−10 msd ,xst
−20 msd) recorded from the free running condition where no
forcing is applied. The spikes repeat with chaotic time inter-
vals, where the averaged spiking frequency is approximately
1.435 kHz. By the studies based on mathematical models
[20], it has been clarified that the spikes are generated by a
saddle focus A and a saddle node B shown in Fig. 2. The
saddle focus A is composed of a two-dimensional unstable
manifold and a one-dimensional stable manifold, whereas
the saddle node B has a one-dimensional unstable manifold
and two one-dimensional stable manifolds. The typical char-
acteristic of this laser system is its fast-slow dynamical struc-
ture. Namely, the laser dynamics is quite slow near the two
saddles, whereas it is much faster everywhere else in the
phase space.

Now we describe our modeling technique for the forced
system. First, we embed the bivariate time serieshxstd ,ystdj
into delay coordinatesXstd=hxstd ,xst−td , . . . ,x(t−sd−1dt)j,
Ystd=hystd ,yst−td , . . . ,yst−sd−1dtdj (d is the embedding
dimension,t is the time lag) and suppose according to the
embedding theorem[21] that there exists the following
dynamics:

xst + 1d = F„Xstd,Ystd…. s1d

The main point of our modeling is to construct a nonlinear

function F̃ that approximates Eq.(1). Since the functionF is
in an input-output form, which requires rather complex mod-
eling, we make a simplification. Namely, according to the
property of PS, which is induced by only a small forcing
strength, we assume that the intensity of the forcing is much
smaller than that of the forced system(uyu! uxu) and via a first
order approximation we obtain

xst + 1d = F„Xstd… + a1 I sins2pntd + a2 I coss2pntd. s2d

Then we model the forced regime with an approximate non-

linear functionF̃. If the original forced dynamics is precisely
modeled, the regime of PS as well as non-PS in the param-
eter space of forcing frequencyn and amplitudeI can be

predicted by studying the modelF̃. A practical modeling pro-
cedure is to optimize all parametershV ,aj of the model

function F̃ by minimizing the cost function:

EDsV,ad = ot,I,n
hxst + 1d − F̃„V,Xstd…− a1 I sins2pntd

− a2 I coss2pntdj2. s3d

For the construction of the nonlinear models, there are
mainly two approaches: local modeling and global modeling.
The local approach is to divide the state space into small
regions and construct a linear or nonlinear function in each
region[22]. The global approach, on the other hand, yields a
single nonlinear function that approximates the global dy-
namics without dividing the space[23,24]. Although the lo-
cal approach is capable of a precise modeling of the local
dynamics, it is not suitable for modeling the global dynami-
cal structure such as bifurcations[24–26], due to its local
property. We therefore take a global approach.

FIG. 1. Experimental setup of the CO2 laser with feedback(up-
per) and time serieshxstdj of the laser intensity recorded without
forcing (lower).

FIG. 2. Three-dimensional embedding(xstd ,xst−10 msd ,
xst−20 msd) of the laser intensity data of Fig. 1.
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The modeling of the system requires a careful treatment
because of its fast-slow dynamical property. To recover the
global dynamics, a simultaneous modeling of both slow and
fast dynamics is indispensable. It is also important to pre-
cisely model the local dynamics near the saddles that char-
acterize the system. To deal with this problem, the radial
basis function(RBF) [24,26]

F̃sV,Xd = ok
Vk fssk,iX − ckid s4d

is exploited, wheref andck stand for the basis function and
the centroid andi ·i denotes the Euclidean norm. Although
the RBF is a global approach, it has a local property, which is
suitable for the modeling of our delicate dynamics[26].

Our modeling procedure consists of the following main
steps.

(1) The embedding dimensiond and the time lagt are
chosen. To determine the time lag, commonly used criteria
[27] such as the first zero-crossing point of the autocorrela-
tion function or the first local minimum of the mutual en-
tropy are not exploited. The time lag is chosen so that the
structure of the two-dimensional unstable manifold of the
saddle focus A is fully unfolded. The embedding dimension
is set to be three, because the present chaotic regime can be
fully modeled[20] by a set of six ordinary differential equa-
tions, whose relevant dynamical variables reduce to three in
the proximity of the saddle focus A[20].

(2) Due to the fast-slow dynamics, equally sampled data
concentrate much more densely near the fixed points than
outside. For modeling both the fast and slow dynamics with
a good balance, we scatter the data points. First, we define
the slow data ashXstd : uxst+Dtd−xst−Dtdu / s2·Dtd,Qvj,
where the thresholdQv is chosen so that the points near the
saddle focus A are separated from the others. All other data
are regarded as fast data. Then among the slow data set, a
subset of data satisfyinghiXstd−Xssdi.Qs, ∀ t ,sj is ex-
tracted. In the same way, a subset of the fast data satisfying
hiXstd−Xssdi.Q f , ∀ t ,sj is extracted.

(3) From both of the fast and the slow data, the same
number of centroidshckj is randomly selected with an addi-
tion of noise. The centroids with additive noise, calledchap-
erons[26], have been successfully applied to the modeling of
similar chaotic dynamics from string data[26].

(4) As a basis function, Gaussian RBF,fssk,rd
=exps−r2/sk

2d, with an inhomogeneous variance parameter,
sk

2=miniÞkici −cki2, is used. Due to the fast-slow property,
centroids selected in procedure(3) are located not uniformly
in the data space. The inhomogeneous parameters are effec-
tive for interpolating such nonuniform centroids.

(5) The model parametershV ,aj are optimized by the
least-square-error algorithm of the cost functionE=ED
+bhokVk

2+okak
2j, where the first term corresponds to the fit-

ting error of Eq.(3) and the second term corresponds to the
regularizer[28]. The regularizing constantb is chosen in
such a way that a natural frequency of the nonlinear model is
close to the one of the original system.

(6) By changing the frequencyn and the amplitude

I of the forced model,xst+1d=F̃(Xstd)+a1 I sins2pntd

+a2 I coss2pntd, the model frequencyñ is computed by its
free running. The model frequency is defined as an inverse of
the averaged interspike interval, where the spike is detected
by the occurrence of a large output(x.0.7). The synchroni-
zation diagram is finally drawn with a relative frequency
difference between the model and the forcing asDn
=sñ−nd /n.

To apply our modeling to the laser experiment, the em-
bedding dimension, the time lag, and the thresholds were set
as sd, t , Qv , Qs, Q fd=s3, 10ms, 0.0075, 0.012, 0.016d.
From each of the fast and the slow data from a non-forcing
experiment, 300 chaperons were randomly selected with an
addition of 30% noise of the data. By varying the regulariz-
ing parameter inbP f0.9: 1.1g, we have confirmed that the
nonlinear model yields a natural frequency ofñ=1.435 at
b=1.05, which coincides in a good accuracy with the laser’s
original frequency measured from the nonforcing experi-
ment. We therefore exploited the nonlinear model optimized
with the regularizing parameterb=1.05. Figure 3 gives the
synchronization diagrams of the original laser and the non-
linear model in the case when the modulation amplitude is
I =1.0% andI =2.0%. The model diagrams show a strong
similarity to the original ones. In Fig. 4, borderlines between
the regimes of PS and non-PS were drawn for the original
laser and the nonlinear model, where the regime of PS was
defined asuDnu,0.05[8]. Again the model prediction is in a
very good agreement with the experiments. The prediction
error in the region of a large forcing amplitude might be due
to the limitation of the first order approximation introduced
for the nonlinear modeling(2). This demonstrates that by

FIG. 3. Relative frequency differenceDn of the original laser
(solid line) and the model(dotted line with crosses) with a varying
forcing frequencynP f1 kHz, 2 kHzg and a fixed amplitude:(a) I
=1.0%,(b) I =2.0%.
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using only three sets of experimental data, synchronization
diagram of the chaotic spiking laser can be well recon-
structed without further experiments.

To conclude, the modeling approach presented in this pa-
per enables the reconstruction of a synchronization diagram
of a forced spiking system from only a few experimental
records of bivariate time series. The difficulty of modeling

the global properties of such dynamics has been overcome
by using the RBF, which is relatively simple to implement.
With an application to the experimental data of the CO2 la-
ser, our technique was capable of predicting the regime of PS
as well as non-PS in the parameter space of forcing fre-
quency and amplitude without further experiments. The basic
idea of the present approach is general and applicable to
other systems. We remark, however, that a certain procedure,
e.g., segmentation of the fast-slow data, requires careful in-
spection of each system. This approach should be of signifi-
cant importance especially for neuroscientific data, where ex-
tensive synchronization analysis in a single neuron is quite
difficult due to its short lifetime and reproduction of the
same experiment with another neuron is almost impossible.
Another important future study is to extend our approach to
a network of coupled oscillators, which has many applica-
tions to synchronization of spatio-temporal systems such as
electrochemical oscillators[10] or brain activity[13].
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